2008 Kavli Prize Laureates in Astrophysics

Awarded to Donald Lynden-Bell, Maarten Schmidt

"for their seminal contributions to understanding the nature of quasars"

2008 Kavli Priize Laureates in AstrophysicsTHE 2008 KAVLI PRIZE IN ASTROPHYSICS is awarded to Maarten Schmidt and Donald Lynden-Bell "for their seminal contributions to understanding the nature of quasars."

In 1963, Maarten Schmidt unlocked the gate to the far reaches of the Universe by correctly identifying emission lines in the optical spectrum of a radio “star” known as 3C273. That insight immediately showed that 3C273 is an extremely luminous, very distant object rather than a star in our own galaxy. Objects like 3C273 are now known as quasars.

Schmidt’s breakthrough interpretation of the spectrum of 3C273 followed essential work by radio astronomers, who discovered quasars by their radio wave emission and measured their positions on the sky. Schmidt extended his discovery by finding quasars even more distant than 3C273 and showing that quasars were much more numerous when the Universe was young. Schmidt also devised powerful statistical techniques to measure the luminosity and space density evolution of quasars.

The extraordinary power emitted by quasars requires an extraordinary engine. Various proposals for the nature of the quasar engine were advanced in the years following Schmidt’s discovery. The watershed in our theoretical understanding of the nature of quasars was Donald Lynden-Bell’s investigation in 1969 of the hypothesis that quasars were powered by gravity, through the accretion of material onto massive black holes.

Although others had suggested that quasars were powered by black hole accretion, Lynden-Bell argued persuasively that most of their luminosity comes from frictional heating in a rotating gaseous disk (the “accretion disk”); developed an approximate model for their spectrum; and suggested that these black holes are to be found in the centers of galaxies. He also pointed out that many nearby galaxies should contain black holes at their centers that do not currently shine (“dead quasars”), and that these could be detected by their gravitational influence on stars orbiting nearby, a prediction that has been observationally confirmed.

Maarten Schmidt’s and Donald Lynden-Bell’s seminal work dramatically expanded the scale of the observable Universe and led to our present view of a violent universe in which massive black holes play a key role.


Donald Lynden-Bell

"Donald Lynden-Bell's father was a professional soldier in the Seaforth Highlanders, born into a family with a long army tradition. He fought through the First World War, first in France, then from Basra to Baghdad and later from Jaffa to Tyre in Lebanon, where he was when the war ended. Later he served in India, travelled in Ladakh, Tanganyika and the U.S., and was stationed in Palestine. He had broad interests in art, design, and science. Donald has an elder sister, Jean (Grieve), who became an acclaimed stringed-instrument teacher in Ontario."  Continue


Maartin Schmidt

"I was born in December 1929 in Groningen, The Netherlands. My parents were both from Berkhout, near Hoorn. They had known each other for many years when they were married in 1922. Father was a government accountant who eventually ended up heading the country's accountants in The Hague. He died in 1977. Mother eventually moved to Roden near Groningen, and died in 1991 at the age of 90. My brother Cees is retired after an academic career specializing in Middle Age Dutch."   Continue

Explanatory Notes 

Many quasars are bright enough to be observed with small telescopes, through which they appear as single points of light. Until around 50 years ago, those who looked up at the night skies had no way to distinguish them from ordinary stars in our galaxy. However, as radio telescopes became more advanced, astronomers identified a group of objects which produced unusually compact patterns of radio wave emissions.

During the late 1950s, scores of these radio sources were recorded, but astronomers were unable to link them with visible objects until 1960. They became known as quasi-stellar, or star-like, radio sources - a phrase later shortened to quasars.

In 1960, Allan Sandage and Thomas Matthews identified quasar 3C48 as a faint, star-like object seen on photographic plates. Two years later, Cyril Hazard in Australia identified the location of quasar 3C273 by timing the blackout of its radio signal as the moon passed in front of it. This allowed Maarten Schmidt, who had emigrated from The Netherlands to the U.S. and was working at the California Institute of Technology, to obtain its visible light spectrum using the 200-inch Hale Telescope on Mount Palomar in California.

The pattern displayed by 3C273’s spectrum was initially puzzling, until Schmidt realized it could be explained by the phenomenon known as red shift - the displacement of the light emitted by an object toward the red end of the spectrum due to motion of the source.

Schmidt’s calculations suggested 3C273 was travelling away from Earth at a rate of 47,000 kms per second (29,000 miles per second). This seemed unbelievable at first, until Schmidt and colleague Jesse Greenstein examined a spectra of 3C48 and found this quasar was moving at more than double this speed. Schmidt correctly interpreted these findings as arising from the expansion of the universe, which in turn allowed him to calculate 3C273 to be approximately 2,000 million light years away. This in turn implied it was emitting more than a million million times the energy of the Sun. Schmidt went on to identify quasars even more distant than 3C273, and to demonstrate they were much more numerous when the universe was young. He also devised powerful statistical methods to measure the luminosity and space density evolution of quasars.

His work left astronomers puzzling over how quasars could emit such enormous quantities of energy. It is now known that quasars like 3C273 emit hundreds of times the energy of the entire Milky Way Galaxy from a volume no larger than the size of our own solar system.

Various theories were proposed to explain this. Shortly after Schmidt’s discovery, astrophysicists Edwin Salpeter in the U.S. and Yakov Zeldovich in the USSR put forward the theory that quasars were powered by black holes.

However, the key breakthrough came in 1969 with the publication of English astrophysicist Donald Lynden-Bell’s investigation of this hypothesis. He argued quasar luminosity arose from frictional heating in a gaseous disk of material rotating around giant black holes at their centers. The prediction that quasars are found at the centers of galaxies was later confirmed by high-resolution telescope observations.

Lynden-Bell, of Cambridge University in the UK, calculated the spectrum this model should produce and compared it to observed quasar spectra. He also said nearby “dead quasar” galaxies should contain black holes that did not shine, and that these could be detected by their gravitational influence on nearby orbiting stars - another prediction later confirmed by observation.

In making their award, the members of the Kavli Astrophysics Prize Committee said, “Maarten Schmidt and Donald Lynden-Bell’s seminal work dramatically expanded the scale of the observable universe and led to our present view of the violent universe in which massive black holes play a key role.”

By Nic Fleming, Science writer

Committee Members 

Kavli Prize Committee in Astrophysics:

Professor Reinhard Genzel
Max Planck Institute for Extraterrestrial Physics
Garching, Germany

Professor Wallace L.W. Sargent
California Institute of Technology
Pasadena, California – United States

Professor Harvey Tananbaum
Smithsonian Astrophysical Observatory
Cambridge, Massachusetts – United States

Professor Scott Tremaine
Institute for Advanced Study
Princeton, New Jersey – United States

Professor Oddbjørn Engvold (Chair)
University of Oslo
Oslo, Norway


Donald Lynden-Bell

Institute of Astronomy, Cambridge University

United Kingdom

Donald Lynden-Bell studied astronomy at the University of Cambridge in the UK, to which, after periods at the California Institute of Technology and the Royal Greenwich Observatory, he returned in 1972 to become Professor of Astrophysics and the first Director of the Institute of Astronomy. Read Full Bio

Maarten Schmidt

California Institute of Technology

United States of America

Maarten Schmidt gained his PhD under the famous late Dutch radio astronomy pioneer Jan H. Oort. He emigrated to the U.S. and joined the California Institute of Technology in 1959. Read Full Bio